Istanbul Technical University
Department of Architecture

2021 Visiting Team Report
Continuing NAAB International Certification
24/26-28 May 2021

B. Arch. (157.5 credits)

The National Architectural Accrediting Board

Date of last visit: November 2014

Vision: The NAAB aspires to be the leader in establishing educational quality assurance standards to enhance the value, relevance, and effectiveness of the architectural profession.

Mission: The NAAB develops and maintains a system of accreditation in professional architecture education that is responsive to the needs of society and allows institutions with varying resources and circumstances to evolve according to their individual needs.
I. Summary of Visit

a. Acknowledgments and Observations

The team recognizes the department chair and vice chairs for being so well prepared for this virtual International Recertification visit. The team extends its appreciation for the thorough preparation of the Program Self Evaluation Report (PSER) and digital files with supporting student evidence. The course files were well organized and therefore easy to navigate and review. The program’s response to our follow-up questions and requests was always timely and comprehensive.

Meetings with students, faculty, staff, alumni, and administrators were always insightful, with free-flowing and engaging discussion even with the constrained virtual environment.

The Dean and the Provost spoke of the strong leadership contributions of the program to the university. The Provost talked about the program in the context of the university and noted that “everything new comes from architecture.”

The student quality is very high, with ITU attracting the top 1.2% of high school graduates through the national entrance exam. Students are mature and come with passionate views for their future roles in the profession. Students spoke about how they feel they are not just learning architecture but instead a lifestyle as they realize their individual actions can make a profound impact on the society as a whole. The learning culture is strong and supports a collaborative, competitive, research-focused approach that contributes to the variety of student work. Program administrators and faculty were highlighted as being accessible to assist students who appreciate the individualized attention not always found in the large lecture classes. Though it is clear that in-person learning, especially in the studio environment, is missed; students noted their satisfaction with the transition to remote digital learning and their newfound appreciation for in-person learning, which speaks to the high standards ITU maintains throughout its program.

Faculty are collegial and are involved in a range of leadership roles in the program, university, and the profession. The faculty enjoy the student exchanges in the classroom due to being able to work with a creative group that is not limited to design. Faculty are well supported by the program and mentioned an appreciation for assistance received in effectively pivoting to the remote learning/teaching environment. Faculty members are experienced teachers and scholars who contribute to a well-structured curriculum.

Program alumni are loyal to the program and ready to provide support when needed. Alumni hire graduates, serve as adjunct faculty and lecturers, and financially support the program through fundraising efforts. There seems to be an extended family-style network of alums who are dispersed around the world and, in some cases, have multigenerational family ties to the program.

The staff are dedicated to supporting the students’ needs. They have embraced the pivot to remote learning very well, and have stepped in to assist with the range of challenges that students have had to deal with during the pandemic. While the workload has increased, it is manageable, and they indicated they are well-supported by faculty, students, and administration. Staff has provided dedicated support to faculty and students to provide access to the new remote learning tools in the cloud.

The curriculum is exceptionally strong in Realm B: Building Practices, Technical Skills, and Knowledge. The course work exhibited in this realm illustrated a strong level of comprehension for the technical aspects of design, systems, and materials. The course syllabi and the student evidence identified within the realm showcased the excellent training that students in the program are acquiring. The beautifully crafted
technical drawings for real projects support the program’s mission to train architects who are sensitive to the environment.

b. Conditions/Student Performance Criteria Not Achieved

<table>
<thead>
<tr>
<th>Conditions Not Described or Demonstrated</th>
<th>Conditions Not Met</th>
<th>SPC Not Met</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>None</td>
<td>A.6 Use of Precedents</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B.9 Building Service Systems</td>
</tr>
</tbody>
</table>

c. Items to Address

Student Enrollment: A more consistent student enrollment for the program is needed. Over the last two years the enrollment has stabilized, however the increase of the student body is beyond what the program can sustainably support. The large student body has impacts on physical space allocations, program specific resources, faculty interaction with students, and takes away from the faculty time to do research.

Learning Culture: Students did not indicate any knowledge of an existing studio culture policy, despite one existing (SuppInfo5_StudioCulturePolicy).

Funding: The visiting team supports the program’s efforts to establish a fundraising database and structured support goals that are assessed annually.

Course Registration: ITU’s course registration system needs improvements. System crashes and inability to balance class sizes presents challenges to students.

d. Progress Since the Previous Visit

A.10 Cultural Diversity: Understanding of the diverse needs, values, behavioral norms, physical abilities, and social and spatial patterns that characterize different cultures and individuals and the implication of this diversity on the societal roles and responsibilities of architects.

2014 Visiting Team Assessment of A.10 (2009 Conditions for Substantial Equivalency): **Not Met.** Studio projects demonstrate an understanding of the diverse needs, values, and abilities of different aspects of Turkish culture but students are not often challenged to think—and create—beyond their own borders. As an institution whose vision is to be a world university, and whose objective is to contribute to a global society, it is ITU’s responsibility to engage students in a better understanding of the design needs of other cultures.

2021 Visiting Team Assessment: ☒ A.10 is Met

This criterion is now Met. The criterion number and title has changed from A.10 to A.8. Cultural Diversity and Social Equity. Evidence of student achievement at the prescribed level was found in student work prepared for MIM 361E Arch. Survey & Rest. Studio.

B.2 Accessibility: Ability to design sites, facilities, and systems to provide independent and integrated use by individuals with physical (including mobility), sensory, and cognitive disabilities.

2014 Visiting Three Team Assessment of B.2 (2009 Conditions for Substantial Equivalency): **Not Met.** Studio projects do not consistently show the ability to design sites and facilities for use by individuals with varying abilities. Specifically, accessible routes are shown in upper-level studio courses such as MIM 492/e Graduation Project, but accessible elements are not indicated for parking lots, toilet rooms, sleeping quarters, and assembly spaces in any studio projects. MIM 461/e Environmental Design for the Disabled and Elderly addresses this criterion, but it is an elective course, not required. The ability to design accessible sites and facilities seems especially critical for such a cosmopolitan city that is situated on very hilly terrain.
2021 Visiting Team Assessment: ☒ B.2 is Met
This criterion is now Met. This criterion is now identified under B.3 Codes and Regulations. Since the previous visit, the program has made notable efforts to address this deficiency. The course MIM114E Accessibility was introduced to the program in fall 2015. Evidence of student achievement at the prescribed level was found in student work throughout the curriculum, and specifically for student work prepared for MIM 411E Architectural Design VII, MIM 114E Accessibility, MIM 4902E Diploma Project, MIM 246E Environmental Control Studio, and MIM 484 Construction Project. The assignment for a diagrammatic summary and analysis of Istanbul building code within MIM 484 Construction Project is exceptional.
II. COMPLIANCE WITH THE 2019 CONDITIONS FOR NAAB INTERNATIONAL CERTIFICATION

Part One: Institutional Support and Commitment to Continuous Improvement
This part addresses the commitment of the institution, and its faculty, staff, and students to the development and evolution of the program over time.

Part One (I): Section 1—Identity and Self-Assessment
I.1.1 History and Mission: The program must describe its history, mission, and culture and how that history, mission, and culture shape the program’s pedagogy and development.

- Programs that exist within a larger educational institution must also describe the history and mission of the institution and how that shapes or influences the program.

- The program must describe its active role and relationship within its academic context and university community. This includes the program’s benefits to the institutional setting, and how the program as a unit and/or individual faculty members participate in university-wide initiatives and the university’s academic plan. This also includes how the program as a unit develops multi-disciplinary relationships and leverages opportunities that are uniquely defined within the university and its local context in the surrounding community.

[X] Described

2021 Analysis/Review of I.1.1: The Istanbul Technical University was founded in 1773 and is one of the oldest universities in the country. ITU has been training architects since 1884. The Faculty of Architecture (FoA) is one of the four oldest departments within the university, having graduated its first graduates in 1931. In 2008 the program sought and obtained NAAB Substantial Equivalency, and was the first program outside the U.S. to receive the designation. Today, ITU is one of the leading state universities in Turkey with approximately 37,000 students, offering 86 undergraduate and 192 graduate degree programs.

ITU is one of the leading research universities in Turkey. Its mission as a research institution is to expand the borders of knowledge and its applications in science, technology, and art, for contributing to sustainable communities. Its vision is set on maintaining a leading, international university through its expertise and creativity in science, technology and art. Its objectives are:

- Education targeting change and improvement,
- Outcome-oriented, interdisciplinary research that benefits society,
- Effective cooperation in international relations,
- Versatile, effective, and sustainable university – industry cooperation (UIC), and
- Strengthening the ITU perception in public; a participatory and transparent governance and with increasing own revenue.

With modern research and educational facilities, social life, and strong local and global institutional contacts, ITU has always been a top choice for students and has achieved a justified reputation. In its pioneer role, ITU trains young talented individuals for a future not only in Turkey but also worldwide. A range of alumni are successfully practicing outside of Turkey. The tradition of ITU is an engineering focused university. As one of the oldest programs with a strong reputation in Turkey for graduating well-prepared graduates for practice, the program has been successful in attracting the top students into the program over an extended period of time. Many of the students mentioned multiple generations of family graduating from ITU with a degree in architecture.

Department of Architecture’s (DoA) mission is to train architects who are sensitive to the environment, attentive to social and individual expectations, equipped with ethical and aesthetic values, and absorbing innovations and technological developments in creating resourceful solutions for the contemporary needs of the 21st-century societies in both local and global scales. Its undergraduate program aims to cultivate students’ awareness of the cultural, ecological, ethical, aesthetical, historical, and sociopolitical dimensions of built space and to enable them to make accountable decisions as well as innovative designs to
address the needs of all and to increase the quality of life for all. DoA prepares its graduates to take leadership roles across design-related areas and encourages them to utilize new ways of designing through the employment of advanced digital design and manufacturing tools and technologies.

I.1.2 Learning Culture: The program must demonstrate that it provides a positive and respectful learning environment that encourages optimism, respect, engagement, and innovation between and among the members of its faculty, student body, administration, and staff in all learning environments, both traditional and non-traditional.

- The program must describe how faculty, staff, and students been able to participate in the development of policies related to learning culture and the ongoing assessment and evaluation of those policies.
- The program must describe the ways in which students and faculty are encouraged to learn both inside and outside the classroom through individual and collective learning opportunities that include, but are not limited to, participation in field trips, professional societies and organizations, honor societies, and other program-specific or campus-wide and community-wide activities.

[X] Described

2021 Analysis/Review of I.1.2: ITU exhibits a strong learning culture that combines historical tradition with contemporary innovations in a competitive and engaging environment. Students are mature and come with passionate views for their future roles in the profession. The education provided by ITU encourages students to develop a holistic and critical lens to their work. Students spoke about how they feel they are not just learning architecture, but instead a lifestyle as they realize their individual actions can make a profound impact on the society as a whole.

Program administrators and faculty were highlighted as being accessible and helpful in assisting students who appreciate the individualized attention they might not always get in their large lecture classes. Throughout the transition to remote learning, students have remained engaged and supported while gaining a new appreciation for the in-person studio environment—a testament to the high standard ITU has maintained in both the physical and digital realms. Program graduates use their learned design skills across a wide variety of sectors and have access to many opportunities through an active and supportive alumni network.

Students did not indicate any knowledge of an existing studio culture policy, despite such a policy provided by the department. Representation is found through formal means such as course evaluations as well as through informal means such as discussions with faculty and the dean.

I.1.3 Social Equity: The program must describe how social equity is defined within the context of the institution or the country in which it is located.

- The program must describe its approach to providing faculty, students, and staff with a culturally rich educational environment in which each person is equitably able to learn, teach, and work.
- The program must describe how its graduates have been prepared to be sensitive to differences in gender, culture, and customs, and be encouraged to assume responsibility as professionals in society.

[X] Described

2021 Analysis/Review of I.1.3: ITU has demonstrated a commitment to equitable practices in its program, which are evident in both course material and student work. Their values are aligned with the United Nations Sustainable Development Goals (SDGs), which serve as a guide for many initiatives across the program (https://impact.itu.edu.tr/).
During the pandemic and the program’s sudden transition to remote learning, staff ensured equitable access to technology by providing disadvantaged students with dedicated computer support and access to the new remote learning tools in the cloud. Another notable initiative is the Albirak project, which works to address the critical issue of student access to material resources.

I.1.4 Defining Perspectives: The program must describe how it is responsive to the following perspectives or forces that affect the education and development of professional architects. The response to each perspective must further identify how these perspectives will continue to be addressed as part of the program’s long-range planning activities.

A. Collaboration and Leadership. The program must describe its culture for successful individual and team dynamics, collaborative experiences, and opportunities for leadership roles.

B. Design. The program must describe its approach to developing graduates with an understanding of design as a multidimensional process involving problem resolution and the discovery of new opportunities that will create value.

C. Professional Opportunity. The program must describe its approach to educating students on the breadth of professional opportunities and career paths, including the transition to internship and licensure.

D. Stewardship of the Environment. The program must describe its approach to developing graduates who are prepared to both understand and take responsibility for stewardship of the environment and natural resources.

E. Community and Social Responsibility. The program must describe its approach to developing graduates who are prepared to be active, engaged citizens able to understand what it means to be professional members of society and to act ethically on that understanding.

[X] Described

2021 Analysis/Review of I.1.4:

Collaboration and Leadership: Collaboration learning experiences occur in the foundation year with the team teaching with group projects. MIM343 Urbanism and Planning Law allows students to experience collaborative and multidisciplinary tasks in the projects. The “A3 Colloquium” organized by the program provides opportunities for faculty and students to gather and review curricular outcomes of all five departments. At the level of DoA, students and faculty participate in assessment interviews with external reviewers of the Turkish Higher Education Quality Council (YÖKAK).

Design: Design is a central tenet of the teaching and learning culture throughout the curriculum. Students are challenged to use design both as a means of creating new opportunities in the built environment as well as in dealing with natural, environmental, and social challenges. The program encourages and supports different perspectives to the design training. Students take a total of eight design studios, each elevated in the level of complexity and incorporating material taught in previous courses. This ensures students are not only learning design but also applying it in their studio work.

There is growing emphasis within the program on a forward-looking integration of computational design, systemic analysis, and data into design processes. This is especially evident with the work being done in MIM 361E Architecture Survey & Restoration Studio, a course that uses advanced scanning technology and historical drawings to craft project narratives.

Professional Opportunity: The program values the preparation and transition of students to practicing architects well-equipped for the various roles of the profession. The program aims to prepare students to design practice with comprehensive studio content and learning outcomes. Along with practicing faculty members, experienced architects and designers are recruited as adjunct studio instructors to provide students a “practicum”-like studio environment to apprehend the various dimensions of novel design practice.
The curriculum comprises compulsory internships in architecture offices, construction sites, and other associated settings for students to experience professional problems, processes, and approaches. These internships offer opportunities for students to work with renowned professionals and experts from other disciplines with real-world design, construction, and management workflows. Further, internships in architecture offices and construction sites expose students to the need for continuous learning in the practice of architecture and related areas.

In Turkey, a 4-year Bachelor of Architecture degree from a government-accredited higher education institution is the only requirement for becoming a registered architect. Registration is carried out by the Chamber of Architects of Turkey, the UIA Turkey Chapter.

Stewardship of the Environment: The different levels of design studio and diploma project courses highlight the commitment to minimizing negative environmental impacts and connecting people with the natural environment. The campus provides an excellent environment for the program by prioritizing ecology, recycling, and sustainable development; the campus waste is recycled into clean energy through the “Sustainable Energy Base” project and the university is part of the Green Campus initiative. ITU’s Green Campus is the 67th in the world and the 32nd in Europe.

Community and Social Responsibility: The recently introduced course for first-year students, MIM 119E Introduction Architecture and Ethics, provides a foundation for students in core ethical values and professional responsibilities. There are a range of organizations and initiatives that students can provide significant contributions to the community. These activities include “Architecture for All,” devoted to offering architectural solutions to social problems, and the Happy Baby sling design and local production initiative partnered with Children in Africa Breastfeeding Support (CHIABS) in Uganda. Program faculty actively participate in the university’s Lifelong Learning Center by providing services as designers and/or consultants for projects on the ITU campus.

I.1.5 Long-Range Planning: An ICert degree program must demonstrate that it has a planning process for continuous improvement that identifies multiyear objectives within the context of the institutional and program mission and culture. In addition, the program must describe its process for collecting data and using the data to inform its plan for continuous improvement.

[X] Described

2021 Analysis/Review of I.1.5: The two broad initiatives in the areas of research and human resources are well defined by the multiyear objectives (2017–2021) in the categories of education, research, practice, relations with stakeholders, international relations, and human resources. Progress information defines each of these categories.

I.1.6 Assessment:

A. Program Self-Assessment Procedures: The program must demonstrate that it regularly assesses the following:

- How well the program is progressing toward its mission and stated objectives.
- Progress against its defined multiyear objectives.
- Strengths, challenges, and opportunities faced by the program while continuously improving learning opportunities.

The program must also demonstrate that results of self-assessments are regularly used to advise and encourage changes and adjustments to promote student success.

B. Curricular Assessment and Development: The program must demonstrate a well-reasoned process for curricular assessment and adjustments, and must identify the roles and responsibilities of the personnel and committees involved in setting curricular agendas and...
initiatives, including the curriculum committee, program coordinators, and department chairs or directors.

[X] Described

2021 Analysis/Review of I.1.6: The program actively monitors and controls action plans for the program's progress toward its mission and stated objectives for both program and curricular self-assessment. The education area has four objectives, three of which are ongoing processes (improving teaching methods, developing internship opportunities, and evaluating the performance of the classes). Approximately 75% of the objectives have been achieved. The second area that the program focuses its efforts is on research. The number of research projects and publications is increasing at a sustainable pace (17 research projects, 151 international and indexed publications in 2017-2020). The program is working closely with the faculty and related offices of the Rectorate to develop a more robust performance measurement system for all of its activities.

Part One (I): Section 2—Resources

I.2.1 Human Resources and Human Resource Development: The program must demonstrate that it has appropriate human resources to support student learning and achievement. This includes full- and part-time instructional faculty; administrative leadership; and technical, administrative, and other support staff.

- The program must demonstrate that it balances the workloads of all faculty to support a tutorial exchange between the student and the teacher that promotes student achievement.
- The program must demonstrate that faculty and staff have opportunities to pursue professional development that contributes to program improvement.
- The program must describe the support services available to students in the program, including, but not limited to, academic and personal advising, career guidance, and internship or job placement.

[X] Demonstrated

2021 Team Assessment of I.2.1: ITU offers a wide range of support services for students including a Career Center, Culture and Art Union of Students, Office of International Affairs, Physical Education Department, Psychological Counseling and Guidance Center, a (currently paused) Student Council, Students with Disabilities Unit, Regulations and Directives for all aspects of undergraduate and graduate education, and newly introduced Distance Education Principles resulting from the pandemic. During junior and senior level studies, students benefit from having practicing architects serve as adjunct studio professors.

As described in the PSER (pages 16-18), appointment and promotion in ITU are regulated by the Council of Higher Education (CoHE). ITU has internal appointment and promotion regulations, which are categorized as research, teaching, and service. The average faculty course load is around 10 hours of teaching per week, graduate student supervision, research, and additional administrative duties.

ITU full-time faculty members are eligible for a year-long research sabbatical after the conclusion of six years of active service. Junior faculty members are eligible for short research leaves. Research leaves information was found under Supplemental Information 6 – Human Resource Development Opportunities and Achievements, which includes research leaves, academic reward programs, research achievements, academic achievements, and design achievements.
I.2.2 Physical Resources: The program must describe the physical resources available and how they support the pedagogical approach and student achievement.

Physical resources include, but are not limited to, the following:

- Space to support and encourage studio-based learning.
- Space to support and encourage didactic and interactive learning, including labs, shops, and equipment.
- Space to support and encourage the full range of faculty roles and responsibilities, including preparation for teaching, research, mentoring, and student advising.
- Information resources to support all learning formats and pedagogies in use by the program.

If the program’s pedagogy does not require some or all of the above physical resources, for example, if online course delivery is employed to complement or supplement on-site learning, then the program must describe the effect (if any) that online, on-site, or hybrid formats have on digital and physical resources.

[X] Demonstrated

2021 Team Assessment of I.2.2: The program occupies a historic 19th-century masonry building, designed by the English architect William James Smith and built in the late 1840s as a medical school for the Ottoman Empire. The building is arranged around a green courtyard, has four floors and additional mezzanines in office areas.

The range of support facilities includes: two computer labs, a construction materials lab, an environmental control and construction technologies lab, an innovation and modelling lab, a digital fabrication lab, a conservation and restoration Lab, an industrial product design lab, IstanbulON Urban Mobility Lab and a MIX-R Experience (Mixed Reality) Lab, along with rapid prototyping and metalworking labs, a fine arts workshop, and a ceramic workshop. There are three conference halls: Rm. 109 designed by the famous Turkish architect Nezih Eldem can host up to 250 persons; Rm. 127 is preferred for seminars and symposiums alongside the newly renovated Rm.126, which is equipped with high-tech audio and visual systems.

Most of the labs and workshops are in the basement and ground floor. Studios are mostly located on the second and top floors and the administrative offices are located on the top floor. A new space on the ground floor provides a system for collecting materials called Albırak, which allows students to recycle and reuse materials from the design studios. Two canteens on the ground floor and a canteen on the second floor have been renovated, and vending machines have been placed on the first and second floors. A prayer room has been renovated and opened for use.

I.2.3 Financial Resources: The program must demonstrate that it has appropriate financial resources to support student learning and achievement.

[X] Demonstrated

2021 Team Assessment of I.2.3: As part of a state-funded public university, the DoA has an annual budget according to anticipated expenditures. The program uses the budget for all five departments (budget details for the program were not available) according to the numbers and requirements of faculty, staff, and students. There have been no changes in funding models since the last visit.

Educational expenses include:

- Student costs: a yearly sum of 3,323.00 TL per student (students are fully subsidized for this amount and do not pay tuition. Any student that continues education beyond the 4 years is required to pay the university 210,50 TL in tuition fees for every additional semester.)
- Academic and administrative staff salaries and wages: 28,718,000.00 TL (for the entire DoA in 2021)

Operational expenses (of FoA) include:

- Consumables (stationary, printing, hygiene): 96,000.00 TL
- Travel allowances: 26,000.00 TL
I.2.4 Information Resources: The program must demonstrate that all students, faculty, and staff have convenient, equitable access to literature and information, as well as appropriate visual and digital resources that support professional education in the field of architecture.

Further, the program must demonstrate that all students, faculty, and staff have access to architecture librarians and visual-resource professionals who provide information services that teach and develop the research, evaluative, and critical thinking skills necessary for professional practice and lifelong learning.

[X] Demonstrated

2021 Team Assessment of I.2.4: ITU Library is one of the most comprehensive libraries in Turkey for the fields of engineering, architecture, and music. The Information Systems provide an innovative, state-of-the-art, and robust foundation for information technology (IT). Funding levels that support IT are adequate.

I.2.5 Administrative Structure and Governance

- Administrative Structure: The program must describe its administrative structure and identify key personnel within the context of the program and the school, college, and institution.

- Governance: The program must describe the role of faculty, staff, and students in both program and institutional governance structures. The program must describe the relationship of these structures to the governance structures of the academic unit and the institution.

[X] Demonstrated

2021 Team Assessment of I.2.5: Faculty are involved in the program governance via roles in executive committees, boards, and academic committees, either by election or by appointment.

At the faculty level, elected members serve as representatives of different academic ranks on both the Faculty Board and the Faculty Executive Committee. The Faculty Board is chaired by the Dean, consists of the department chairs and six elected members, and is responsible for the supervision of educational programs and academic decisions. The Faculty Executive Committee, again chaired by the Dean, consists of three full and two associate professors, and one assistant professor elected by the Faculty Board. The committee meets weekly and assists the Dean's administrative and executive duties. Elected representatives of research/teaching assistants and students are invited to and take part in the meetings of these two governance structures in matters concerning education, individual students, and the student body as a whole.

At the program level, faculty members from all academic ranks are appointed by the department chair to serve on a range of academic committees.

The Department Assembly, consisting of all DoA faculty, instructors, and assistants, meets twice yearly. The DoA chair leads the assembly, which focuses on the program and issues in education and human resources as well as suggestions for updating the quality of the program.
The elected representative of research/teaching assistants aids DoA chair and vice-chairs in documenting workload distribution to ensure equal allocation of work hours assisting in teaching and administrative issues.

The "A3 Colloquium" organized by FoA serves as an additional general assembly where students and faculty gather to view, review and discuss curricular outcomes and aspirations of all five departments. At the level of DoA, students of the program and faculty members additionally take part in assessment interviews with external reviewers of the Turkish Higher Education Quality Council (YÖKAK), most recently in March 2021.
PART TWO (II): EDUCATIONAL OUTCOMES AND CURRICULUM

This part has four sections that address the following:

- **STUDENT PERFORMANCE.** This section includes the Student Performance Criteria (SPC). Internationally certified degree programs must demonstrate that graduates are learning at the level of achievement defined for each of the SPC listed in this part. Compliance will be evaluated through the review of student work.

- **CURRICULAR FRAMEWORK.** This section addresses institutional quality assurance and national authorization, credit hour requirements, general education, and access to optional studies.

- **EVALUATION OF PREPARATORY EDUCATION.** The NAAB recognizes that students entering a professional degree program from a preprofessional program and those entering from a non-preprofessional degree program have different needs, aptitudes, and knowledge bases. In this section, programs are required to demonstrate the process by which incoming students are evaluated and to document that the SPC expected to have been met in educational experiences at other institutions have indeed been met.

- **PUBLIC INFORMATION.** The NAAB expects internationally certified degree programs to provide information to the public about International Certification activities and the relationship between the program and the NAAB, admissions and advising, and career information.

Programs demonstrate their compliance with Part Two in four ways:

- A narrative report that briefly responds to each request to “describe, document, or demonstrate.”

- A review of evidence, artifacts, and observations by the visiting team, as well as through interviews conducted during the visit.

- A review of student work that demonstrates student achievement of the SPC at the required level of learning.

- A review of websites, URLs, and other electronic materials.
Part II, Section 1: Student Performance—Education Realms and Student Performance Criteria

II.1.1 Student Performance Criteria: The SPC are organized into realms to more easily understand the relationships between individual criteria.

Instructions to the team:

1. When an SPC is MET, the team is required to identify the course or courses where evidence of student accomplishment was found.

2. If an SPC is NOT MET, the team must include a narrative that indicates the reasoning behind the team’s assessment.

3. After completing the VTR, the team must prepare an SPC matrix (using a blank matrix provided by the program) that identifies the courses in which the team found the evidence of student achievement. The team’s matrix is to be appended to the VTR as Appendix 2.

Realm A: Critical Thinking and Representation: Graduates from NAAB-accredited programs must be able to build abstract relationships and understand the impact of ideas based on the research and analysis of multiple theoretical, social, political, economic, cultural, and environmental contexts. This includes using a diverse range of media to think about and convey architectural ideas, including writing, investigative skills, speaking, drawing, and model making.

Student learning aspirations for this realm include:

- Being broadly educated.
- Valuing lifelong inquisitiveness.
- Communicating graphically in a range of media.
- Assessing evidence.
- Comprehending people, place, and context.
- Recognizing the disparate needs of client, community, and society.

A.1 Professional Communication Skills: Ability to write and speak effectively and use appropriate representational media for both, within the profession and with the public.

[X] Met

2021 Team Assessment of A.1: Evidence of student achievement at the prescribed level was found in student work prepared for MIM 351E Architectural Design VI; MIM 312E Architectural Design V; and TES122E Visual Communication II Visualization and Perspective.

A.2 Design Thinking Skills: Ability to raise clear and precise questions, use abstract ideas to interpret information, consider diverse points of view, reach well-reasoned conclusions, and test alternative outcomes against relevant criteria and standards.

[X] Met

2021 Team Assessment of A.2: Evidence of student achievement at the prescribed level was found in student work prepared for MIM 411E - Architectural Design VII and MIM 343E - Urbanism and Planning Law.
A.3 Investigative Skills: Ability to gather, assess, record, and comparatively evaluate relevant information and performance in order to support conclusions related to a specific project or assignment.

[X] Met

2021 Team Assessment of A.3: Evidence of student achievement at the prescribed level was found in student work prepared for MIM 361E Architectural Survey and Restoration Studio and MIM 4902E Diploma Project.

A.4 Architectural Design Skills: Ability to effectively use basic formal, organizational, and environmental principles, and the capacity of each to inform two- and three-dimensional design.

[X] Met

2021 Team Assessment of A.4: Evidence of student achievement at the prescribed level was found in student work prepared for MIM 4902E Diploma Project and MIM 212E Architectural Design IV.

A.5 Ordering Systems: Ability to apply the fundamentals of both natural and formal ordering systems and the capacity of each to inform two- and three-dimensional design.

[X] Met

2021 Team Assessment of A.5: Evidence of student achievement at the prescribed level was found in student work prepared for MIM 312E Architectural Design VI and MIM 351E Architectural Design V.

A.6 Use of Precedents: Ability to examine and comprehend the fundamental principles present in relevant precedents and to make informed choices regarding the incorporation of such principles into architecture and urban design projects.

[X] Not Met

2021 Team Assessment of A.6: Evidence of student achievement at the prescribed level was not found in student work prepared for MIM 114E Accessibility & TES121E_Project II. Evidence was not clear in student work for how precedent analysis is applied to project work in both of these courses.

A.7 History and Culture: Understanding of the parallel and divergent histories of architecture and the cultural norms of a variety of indigenous, vernacular, local, and regional settings in terms of their political, economic, social, and technological factors.

[X] Met

2021 Team Assessment of A.7: Evidence of student achievement at the prescribed level was found in student work prepared for MIM 321E Contemporary Architecture; MIM 122E Ancient and Byzantine Architecture.

A.8 Cultural Diversity and Social Equity: Understanding of the diverse needs, values, behavioral norms, physical abilities, and social and spatial patterns that characterize different cultures and individuals and the responsibility of the architect to ensure equity of access to buildings and structures.

[X] Met

2021 Team Assessment of A.8: Evidence of student achievement at the prescribed level was found in student work prepared for [MIM 361E Arch. Survey & Rest. Studio].

Realm A. General Team Commentary – Critical Thinking and Representation: The program offers a skill-based curriculum that is focused on research, writing, and graphic analysis as the foundation of the
design process. Evidence of the required ‘abilities and understanding’ for this realm consisting of conveying architectural ideas, investigating, drawing and modeling, have been found in the associated SPC.

Realm B: Building Practices, Technical Skills and Knowledge: Graduates from internationally certified degree program must be able to comprehend the technical aspects of design, systems, and materials and be able to apply that comprehension to architectural solutions. In addition, the impact of such decisions on the environment must be well considered.

Student learning aspirations for this realm include:

- Creating building designs with well-integrated systems.
- Comprehending constructability.
- Integrating the principles of environmental stewardship.
- Conveying technical information accurately.

B.1 Pre-Design: Ability to prepare a comprehensive program for an architectural project, which must include an assessment of client and user needs; an inventory of spaces and their requirements; an analysis of site conditions (including existing buildings); a review of the relevant building codes and standards, including relevant sustainability requirements, and an assessment of their implications for the project; and a definition of site selection and design assessment criteria.

[X] Met

2021 Team Assessment of B.1: Evidence of student achievement at the prescribed level was found in student work prepared for MIM 4902E Diploma Project and MIM 351E Architectural Design V.

B.2 Site Design: Ability to respond to site characteristics, including urban context and developmental patterning, historical fabric, soil, topography, ecology, climate, and building orientation in the development of a project design.

[X] Met

2021 Team Assessment of B.2: Evidence of student achievement at the prescribed level was found in student work prepared for MIM 411E Architectural Design VII; MIM 343E Urbanism and Planning Law; MIM 361E Architectural Survey and Restoration Studio.

B.3 Codes and Regulations: Ability to design sites, facilities, and systems that are responsive to relevant codes and regulations, and include the principles of local life-safety and accessibility standards.

[X] Met

2021 Team Assessment of B.3: Evidence of student achievement at the prescribed level was found in student work prepared for MIM 411E Architectural Design VII, MIM 114E Accessibility, MIM 4902E Diploma Project, MIM 246E Environmental Control Studio, and MIM 484 Construction Project.

B.4 Technical Documentation: Ability to make technically clear drawings, prepare outline specifications, and construct models illustrating and identifying the assembly of materials, systems, and components appropriate for a building design.

[X] Met
2021 Team Assessment of B.4: Evidence of student achievement at the prescribed level was found in student work prepared for MIM 361E Arch. Survey & Rest. Studio. This course uses history, advanced scanning technology, and historical drawing to tell the story of these projects. The beautifully crafted technical drawings for real projects support the program’s mission to train architects who are sensitive to the environment. Met with distinction.

B.5 Structural Systems: Ability to demonstrate the basic principles of structural systems and their ability to withstand gravity, seismic, and lateral forces, as well as the selection and application of the appropriate structural system.

[X] Met

2021 Team Assessment of B.5: Evidence of student achievement at the prescribed level was found in student work prepared for MIM 253E Steel Structures.

B.6 Environmental Systems: Ability to demonstrate the principles of environmental systems’ design, how design criteria can vary by geographic region, and the tools used for performance assessment. This demonstration must include active and passive heating and cooling, solar geometry, daylighting, natural ventilation, indoor air quality, solar systems, lighting systems, and acoustics.

[X] Met

2021 Team Assessment of B.6: Evidence of student achievement at the prescribed level was found in student work prepared for MIM 246E Environmental Control Studio and MIM 484E Construction Project.

B.7 Building Envelope Systems and Assemblies: Understanding of the basic principles involved in the appropriate selection and application of building envelope systems relative to fundamental performance, aesthetics, moisture transfer, durability, and energy and material resources.

[X] Met

2021 Team Assessment of B.7: Evidence of student achievement at the prescribed level was found in student work prepared for MIM 204E Arch. Building Element Design. The student work evidence is well developed with an extensive amount of research that shows up very well in the drawings and models. Met with distinction.

B.8 Building Materials and Assemblies: Understanding of the basic principles used in the appropriate selection of interior and exterior construction materials, finishes, products, components, and assemblies based on their inherent performance, including environmental impact and reuse.

[X] Met

2021 Team Assessment of B.8: Evidence of student achievement at the prescribed level was found in student work prepared for MIM 203E Building and Const. in Arch. The documentation for building floor, wall, and roof systems is well done. The evidence for environmental impact and reuse needs were found consistently in the flooring reports but not in wall or roof assembly reports.

B.9 Building Service Systems: Understanding of the basic principles and appropriate application and performance of building service systems, including lighting, mechanical, plumbing, electrical, communication, vertical transportation, security, and fire protection systems.

[X] Not Met
2021 Team Assessment of B.9: Evidence of student achievement at the prescribed level was not found in student work prepared for MIM 246E Environmental Control Studio. Appropriate application of communication and security systems was not clear in project work for this course.

B.10 **Financial Considerations:** Understanding of the fundamentals of building costs, which must include project financing methods and feasibility, construction cost estimating, construction scheduling, operational costs, and life-cycle costs.

[X] Met

2021 Team Assessment of B.10: Evidence of student achievement at the prescribed level was found in student work prepared for MIM 359E Construction Management & Economy.

Realm B. General Team Commentary: The student work exhibited for Realm B showcased a strong level of comprehension for the technical aspects of design, systems, and materials. The impact of the students’ designs and how the projects integrate with principles of environmental sustainability are clearly integral to the design approach. Integrated design with building systems is comprehensive and conveyed thoroughly through technical drawings.

Realm C: Integrated Architectural Solutions.
Graduates from internationally certified degree program must be able to demonstrate that they have the ability to synthesize a wide range of variables into an integrated design solution.

Student learning aspirations for this realm include

- Comprehending the importance of research pursuits to inform the design process.
- Evaluating options and reconciling the implications of design decisions across systems and scales.
- Synthesizing variables from diverse and complex systems into an integrated architectural solution.
- Responding to environmental stewardship goals across multiple systems for an integrated solution.
- Knowing societal and professional responsibilities

The internationally certified degree program must demonstrate that each graduate possesses skills in the following areas:

C.1 **Research:** Understanding of the theoretical and applied research methodologies and practices used during the design process.

[X] Met

2021 Team Assessment of C.1: Evidence of student achievement at the prescribed level was found in student work prepared for MIM 4902E Diploma Project; MIM 351E Architectural Design V.

C.2 **Integrated Evaluations and Decision-Making Design Process:** Ability to demonstrate the skills associated with making integrated decisions across multiple systems and variables in the completion of a design project. This demonstration includes problem identification, setting evaluative criteria, analyzing solutions, and predicting the effectiveness of implementation.

[X] Met

2021 Team Assessment of C.2 Evidence of student achievement at the prescribed level was found in student work prepared for MIM 411E Architectural Design Studio VII; MIM 4902E Diploma Project; MIM 351E Architectural Design V. The decision-making evidence documentation is well laid out as a clear
story of the full design process from decision making to setting evaluative criteria / and effectiveness of implementation. Met with distinction.

C.3 Integrative Design: Ability to make design decisions within a complex architecture project while demonstrating broad integration and consideration of environmental stewardship, technical documentation, accessibility, site conditions, life safety, environmental systems, structural systems, and building envelope systems and assemblies.

[X] Met

2021 Team Assessment of C.3: Evidence of student achievement at the prescribed level was found in student work prepared for MIM 4902E Diploma Project, Architectural Design VII. Even though accessible routes were found, these paths were more consistently shown on design projects on flat sites. It does help to have students highlight where all of the accessible paths are for both flat and sloped sites.

Realm C. General Team Commentary: The program has demonstrated evidence of the students' ability to synthesize a wide range of variables into an integrated design solution. Specific examples of complex architecture projects are found in the following:

- MIM 4902E Diploma Project
- Resist & Rewind, an open laboratory for ecological practices
- MIM 441E Architectural Design VII
- Rural & Future: Voices from the Countryside | Alternative Life and Architecture
- MIM 351E Architectural Design V
- Co-Farm Istanbul

Realm D: Professional Practice.

Graduates from internationally certified degree program must understand business principles for the practice of architecture, including management, advocacy, and the need to act legally, ethically, and critically for the good of the client, society, and the public.

Student learning aspirations for this realm include

- Comprehending the business of architecture and construction.
- Discerning the valuable roles and key players in related disciplines.
- Understanding a professional code of ethics, as well as legal and professional responsibilities.

The internationally certified degree program must demonstrate that each graduate possesses skills in the following areas:

D.1 Stakeholder Roles in Architecture: Understanding of the relationships among key stakeholders in the design process—client, contractor, architect, user groups, local community—and the architect’s role to reconcile stakeholder needs.

[X] Met

2021 Team Assessment of D.1: Evidence of student achievement at the prescribed level was found in student work prepared for MIM 333E Building Production Systems and MIM 359E Construction Management and Economy.
D.2 **Project Management:** *Understanding* of the methods for selecting consultants and assembling teams; identifying work plans, project schedules, and time requirements; and recommending project delivery methods.

[X] Met

2021 Team Assessment of D.2: Evidence of student achievement at the prescribed level was found in student work prepared for MIM 359E Construction Management & Economy.

D.3 **Business Practices:** *Understanding* of the basic principles of a firm’s business practices, including financial management and business planning, marketing, organization, and entrepreneurship.

[X] Met

2021 Team Assessment of D.3: Evidence of student achievement at the prescribed level was found in student work prepared for MIM 359E Construction Management & Economy and MIM 333E Building Production Systems.

D.4 **Legal Responsibilities:** *Understanding* of the architect’s responsibility to the public and the client as determined by local regulations and legal considerations involving the practice of architecture and professional service contracts.

[X] Met

2021 Team Assessment D.4: Evidence of student achievement at the prescribed level was found in student work prepared for MIM 343E Urbanism and Planning Law and MIM 359E Construction Management & Economy.

D.5 **Professional Conduct:** *Understanding* of the ethical issues involved in the exercise of professional judgment in architectural design and practice and understanding the role of local rules of conduct and ethical practice.

[X] Met

2021 Team Assessment D.5: Evidence of student achievement at the prescribed level was found in student work prepared for MIM 359E Construction Management & Economy and MIM 119E Introduction to Architecture and Ethics.

Realm D. General Team Commentary: Throughout their studies at ITU, students learn in detail the many aspects of the practice of architecture that are unique to Turkey. The program provides a good understanding of business principles for the practice of architecture. Students indicated an understanding of the professional code of ethics, as well as legal and professional responsibilities.
Part II, Section 2: Curricular Framework

II.2.1 National Authorization and Institutional Quality Assurance: The institution offering the internationally certified degree program must be or be part of an institution that has been duly authorized to offer higher education in the country in which it is located. Such authorization may come from a government ministry or other type of agency.

The institution must have explicit, written permission from all applicable national education authorities in that program’s country or region. At least one of the agencies granting permission must have a system of institutional quality assurance and review which the institution is subject to and which includes periodic evaluation.

[X] Met

2021 Team Assessment of II.2.1: The ITU DoA undergraduate program is validated by the Council of Higher Education in Turkey.

II.2.2 Professional Degrees and Curriculum:

For International Certification, the NAAB requires degree programs in architecture to demonstrate that the program is comparable in all significant aspects to a program offered by a U.S. institution. Further, the program must demonstrate that the degree awarded at the conclusion of this program of study entitles the graduate to practice architecture in his/her home country, subject to meeting any requirements for experience and/or examination. Internationally Certified degree programs must include (or otherwise acknowledge) general studies, professional studies, and electives.

Curricular requirements are defined as follows:

- **General Studies.** A professional degree program must include general studies in the arts, humanities, and sciences, either as an admission requirement or as part of the curriculum. It must ensure that students have the prerequisite general studies to undertake professional studies. The curriculum leading to the architecture degree must include a course of study comparable to 1.5 years of study or 30% of the total number of credits for an undergraduate degree. These courses must be outside architectural studies either as general studies or as electives with content other than architecture.

 If this education is acquired prior to university-level education, the program must describe the system for general studies education in the local context, and how it is substantially equivalent to the requirement stated above.

- **Professional Studies.** The core of a professional degree program consists of the required courses that satisfy the NAAB Student Performance Criteria (SPC). The professional degree program has the discretion to require additional courses including electives to address its mission or institutional context.

- **Electives.** A professional degree program must allow students to pursue their special interests. The curriculum must be flexible enough to allow students to complete minors or develop areas of concentration, inside or outside the program.

[X] Met

2021 Team Assessment of II.2.2: The program offers a 4-year undergraduate program of Bachelor of Architecture. The BArch program includes general and professional studies and consists of 157.5 credits, or 240 ECTS (European Credit Transfer System) credits. Preparatory college admissions criteria in Turkey are those assessed by the national YKS exam explained in II.4.5 of the PSER. The exam is a comprehensive assessment of high school graduates on the subjects of mathematics, natural sciences, social
Istanbul Technical University
Continuing NAAB International Certification
24/26–28 May 2021

sciences, Turkish language, and literature. In 2020, the DoA received students only from the top 1.2% of all YKS entries.

The breakdown of the three groups of courses and their percentage in the overall curriculum in terms of credit hours is as follows:

18.4% -- Gen Ed courses (29 credits out of the total 157.5):
MAT – Mathematics (1 course, First semester, 4 credits), ENG – English (2 courses, Second and Third semesters, 6 credits total), EKO – Economics (1 course, Fifth semester, 3 credits), TUR – Turkish (2 courses, Fifth and Sixth semesters, 4 credits total), ATA – Atatürk Principles and History of the Revolution (2 courses, Seventh and Eighth semesters, 4 credits total), ITB electives – Humanities and Social Science Electives (2 courses, Eighth semester, 6 credits total), DAN – Academic and Career Advising (2 courses, First and Sixth semesters, 2 credits total)

14.6% -- TES courses (23 credits out of the total 157.5)
First semester – 10 credits, Second semester – 8 credits, Third semester – 5 credits

67.0% -- MIM / Professional courses (105.5 credits out of the total 157.5):
Required Course: 84.5 credits out of the total 157.5
First semester – 3.5 credits, Second semester – 7.5, Third Semester – 11.5 credits, Fourth semester – 19 credits, Fifth semester – 16 credits, Sixth semester – 12 credits, Seventh semester – 10 credits, Eighth semester – 5 credits.
Required Professional Electives (21 credits out of the total 157.5):
Fourth semester – 3 credits, Sixth semester – 6 credits, Seventh semester – 6 credits, Eighth semester – 6 credits.

Thirty-three percent of total coursework is are outside of architecture studies.

Part II, Section 3: Evaluation of Preparatory Education
The program must demonstrate that it has a thorough and equitable process for evaluating the preparatory or preprofessional education of individuals admitted to the ICert degree program.

- Programs must document their processes for evaluating a student’s prior academic course work related to satisfying NAAB student performance criteria when a student is admitted to the professional degree program.
- In the event a program relies on the preparatory educational experience to ensure that admitted students have met certain SPC, the program must demonstrate it has established standards for ensuring these SPC are met and for determining whether any gaps exist.

[X] Not Applicable

2021 Team Assessment: Istanbul Technical University offers Bachelor of Architecture (4 years with 157.5 credits) with no preparatory education.

Part Two (II): Section 4 – Public Information
The NAAB expects programs to be transparent and accountable in the information provided to students, faculty, and the public. As a result, the following conditions require all ICert degree programs to make certain information publicly available online.

II.4.1 Statement on International Certification Degrees: In order to promote an understanding of the internationally certified degree by prospective students, parents, and the public, all schools offering the certified degree program must include in catalogs and promotional media the exact language found in the Conditions for NAAB International Certification, Appendix 6.
2021 Team Assessment of II.4.1: The exact language found in the Conditions for NAAB International Certification, Appendix 6, is provided on the department website and is easily accessible to the public.

II.4.2 Access to Conditions and Procedures for NAAB International Certification: In order to assist parents, students, and others as they seek to develop an understanding of the body of knowledge and skills that constitute a professional education in architecture, the school must make the following documents available online and accessible by all students, parents, and faculty:

- 2019 Conditions for NAAB International Certification
- Procedures for NAAB International Certification (edition currently in effect)

2021 Team Assessment of II.4.2: Links to the 2019 Conditions for NAAB International Certification and the Procedures for NAAB International Certification are provided on the department website and are easily accessible.

II.4.3 Access to Career Development Information: In order to assist students, parents, and others as they seek to develop an understanding of the larger context for architecture education and the career pathways available to graduates of internationally certified degree programs, the program must make appropriate resources related to a career in architecture available to all students, parents, staff, and faculty.

2021 Team Assessment of II.4.3: Links to career development information through ITU have been provided.

II.4.4 Public Access to Program Self-Evaluation Reports and Visiting Team Reports: In order to promote transparency in the process of International Certification in architecture education, the program is required to make the following documents available to the public:

- The final decision letter from the NAAB
- The most recent Program Self-Evaluation
- The final edition of the most recent Visiting Team Report, including attachments and addenda

These documents must be housed together and accessible to all. Programs are required to make these documents available electronically from their websites.

2021 Team Assessment of II.4.4: Links to the 2015 final decision letter from the NAAB, the 2014 ITU APR, and the 2014 NAAB Visiting Team Report are all provided on the department website and are easily accessible.

https://darch.itu.edu.tr/naab/?lang=en

1) Decision Letter:

1 This is understood to be the Program Self-Evaluation Report from the previous visit (if applicable), not the Program Self-Evaluation for the visit currently in process.
II.4.5. Admissions and Advising: The program must publicly document all policies and procedures that govern how applicants to the program being reviewed for International Certification are evaluated for admission. These procedures must include first-time, first-year students as well as transfers within and from outside the institution.

This documentation must include the following:

- Application forms and instructions
- Admissions requirements, admissions decisions procedures, including policies and processes for evaluation of transcripts and portfolios (where required), and decisions regarding remediation and advanced standing
- Forms and a description of the process for the evaluation of degree content
- Requirements and forms for applying for financial aid and scholarships
- Student diversity initiatives

[X] Met

2020 Team Assessment of II.4.5: Links to the necessary information on the ITU website have been provided.

Appendix 1: Conditions Met with Distinction

B. 4. Technical Documentation (ability)
B. 7 Building Envelope Systems and Assemblies (understanding)
C. 2. Integrated Evaluations and Decision-Making Design Process (ability)
Appendix 2: Team SPC Matrix

The program is required to provide the team with a blank matrix that identifies courses by number and title on the y axis and the NAAB SPC on the x axis. This matrix is to be completed in Excel and converted to Adobe PDF and then added to the final VTR.

The team is required to complete an SPC matrix that identifies the course(s) in which student work demonstrated the program’s compliance with Part II, Section 1.

<table>
<thead>
<tr>
<th>COURSE NO</th>
<th>COURSE TITLE</th>
<th>REALM A</th>
<th>REALM B</th>
<th>REALM C</th>
<th>REALM D</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIM 114E</td>
<td>Accessibility</td>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>A4</td>
</tr>
<tr>
<td>MIM 112E</td>
<td>Ancient and Byzantine Architecture</td>
<td>A5</td>
<td>A6</td>
<td>A7</td>
<td>A8</td>
</tr>
<tr>
<td>MIM 119E</td>
<td>Intro. to Comp. Des. T. & M. in Arch.</td>
<td>B1</td>
<td>B2</td>
<td>B3</td>
<td>B4</td>
</tr>
<tr>
<td>MIM 203E</td>
<td>Building and Const. in Arch.</td>
<td>B5</td>
<td>B6</td>
<td>B7</td>
<td>B8</td>
</tr>
<tr>
<td>MIM 204E</td>
<td>Arch. Building Element Design</td>
<td>B9</td>
<td>B10</td>
<td>C1</td>
<td>C2</td>
</tr>
<tr>
<td>MIM 212E</td>
<td>Architecture Design IV</td>
<td>C3</td>
<td>C4</td>
<td>C5</td>
<td>C6</td>
</tr>
<tr>
<td>MIM 246E</td>
<td>Environmental Control Studio</td>
<td>D1</td>
<td>D2</td>
<td>D3</td>
<td>D4</td>
</tr>
<tr>
<td>MIM 253E</td>
<td>Steel Structures</td>
<td>D5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIM 312E</td>
<td>Architectural Design VI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIM 322E</td>
<td>Conserv of Hist. Bldg. & Sites</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIM 321E</td>
<td>Contemporary Architecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIM 333E</td>
<td>Bldg Production Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIM 343E</td>
<td>Urbanism and Planning Law</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIM 351E</td>
<td>Architectural Design V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIM 359E</td>
<td>Construction Mgmt & Econ.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIM 361E</td>
<td>Arch. Survey & Rest. Studio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIM 411E</td>
<td>Architectural Design VII</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIM 484E</td>
<td>Construction Project</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIM 4902E</td>
<td>Diploma Project</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TES 121E</td>
<td>Project II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TES 122E</td>
<td>Visual Communication II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table above represents the courses and their compliance with Part II, Section 1 of the NAAB SPC matrix.
Appendix 3: Visiting Team Roster

Team chair
Professor Thomas Fowler IV, FAIA, DPACSA
Director, Graduate Architecture Program and Community Interdisciplinary Design Studio
California Polytechnic State University
San Luis Obispo, California

Team member
Ryan T. McEnroe, AIA, ASLA, LEED AP
Quinn Evans Architects
Washington, DC

Team member
Professor Hsu-Jen Huang, PhD
Savannah College of Art and Design
Savannah, Georgia

Team member
Mike Chiappa, Assoc. AIA, AIAS
Office of Capital Planning and Project Management
Montclair State University
Montclair, New Jersey
Report Signatures

Submitted by

Thomas Fowler IV, team chair

Hsu-Jen Huang, team member

Ryan McEnroe, team member

Mike Chiappa, team member